UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE Faculty of Chemical Engineering Department of Chemical Engineering

Diverse Complexity of Pyrolysis Model Settings for RCT in FDS

Author:

M.Sc. Vojtěch Šálek

Supervisor:

Assoc. Prof. Milan Jahoda

Supervisor-specialist:

Dr. Lucie Hasalová

Pyrolysis

- Gaseous phase influence solid phase and vice versa
- How fast is gasification? \dot{m} (mass loss rate, MLR)
- FDS (Fire Dynamics Simulator)
- Different approaches (variously complex), 2 main

Fire Consequence Modeling

- HRR (Heat release rate) $\dot{q}^{\prime\prime}$
- Heat of combustion ΔH_C

$$\dot{q}^{\prime\prime} = \dot{m} \Delta H_C$$

Complex Pyrolysis Modeling

 Heat transfer, heat conduction, decomposition kinetics, combustion, smoke production and transport, etc.
 -> complicated – a lot of input parameters

 v_1 Wood component $1 \longrightarrow v_{CH,1}$ Char + Combustible gases v_2 Wood component $2 \longrightarrow v_{CH,2}$ Char + Combustible gases v_3 Wood component $3 \longrightarrow v_{CH,3}$ Char + Combustible gases

Consequence vs. Complex Modeling

Consequence modeling	
parameters	
Pyr. gas composition	
Soot yield	
Density	
Heat conductivity	-
Specific heat	
Emissivity	
Heat release rate	
Ignition temperature	
11 vs.	30

- Is 11 enough? For which scenario?
- Validation!

Complex modeling parameters	How to obtain	
Pyr. gas composition	El. analysis, lit.	
Soot yield	Cone calorimetry	
Density	Directly, lit.	
Heat conductivity	Exp., literature	
Specific heat	DSC, literature	
Emissivity	Literature	
Char density	Directly, lit.	
Char heat cond.	Exp., literature	
Char specific heat	DSC, literature	
Char emissivity	Literature	
Preexp. factor	TGA – opt.	
Activation energy	TGA – opt.	
Order of reaction	TGA – opt.	
Heat of reaction	DSC	
Heat of combustion	Cone calorimetry	
Stoch. coeff. of char	TGA	
Stoch. coeff. of	TGA – opt.	
decomposing comp.		

Validation

- Mach 8 cow
 (1000+ mph)
- Does it make sense?
- Compare to experiment
- Costly experiments

Mentor. Can Cows Fly? FloEFD Investigates. Part 3 – Superbly Sonic. https://blogs.mentor.com/robinbornoff/blog/2015/10/12/can-cowsfly-floefd-investigates-part-3-superbly-sonic/ (cited 26.11.2019)

RCT (Room Corner Test)

- Test facility to determine Reaction to fire of facing materials (walls and ceilings)
- Burner location and fire load according to ISO 9705-1
- Room 2,4 x 3,6 x 2,4 m + hood 3 x 3 m + exhaust duct
- Walls covered by OSB board

Room Corner Test – FDS model

Investigated Material - OSB

- Engineered/Composite board
- Building material, insulation, interiors
- Charring, inhomogeneous
- Complex chemical structure (lignin, cellulose, hemicellulose) + adhesives + additives

- Future
 - spruce wood

Experimental Data - Thermocouple

Experimental Data - Thermocouple

Experimental Data - Thermocouple

Experimental Data - Comparison

Experimental Data - Comparison

Temperature Dependent Properties

• Eurocode ČSN EN 1995-1-2

Experimental Data - Comparison

Temperature Dependent Properties

- Eurocode ČSN EN 1995-1-2
- No evaporation

Experimental Data - Comparison

Experimental Data - Comparison

Conclusions and Future Work

- Different pyrolysis models in RCT for OSB board
- HRR modeling insufficient
- Thermal properties most significant

- Thermal properties from cone (PROPTI)
- Coupling with structural solvers
- More detailed char analysis

Measuring Char Bulk Density

- Bulk density
- Archimedes
- Gas or liquid pycnometry rejected

m

- Software
 - Colmap
 - Meshroom
 - VisualSMF
 - Reality Capture
 - Zephyr3D

- Price approximately 60 Euro
- Improvements in future
- Methodology

Thank you for your attention

Invitation to Prague

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

Invitation to Prague

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY

TGA – Thermogravimetric Analysis

- Samples heated on precise scales, constant heating rate
- Processes connected to mass loss,
 thermal decomp. reaction scheme,
 kinetic parameters
 (indirectly, optimization)
- In nitrogen, heating rate 5 °C/min,
 6-9 mg homogeneous samples

$$\frac{\partial}{\partial t}(1-Y_s) = r = k(T)f(1-Y_s) \quad , \tag{2.1}$$

$$k_c = A \cdot e^{\left(\frac{-E_a}{RT}\right)} \quad , \tag{2.4}$$

$$r = \left(\frac{\rho}{\rho_0}\right)^N X_{O_2}^{N_{O_2}} A \ e^{\left(\frac{-E_a}{R_T}\right)} \quad , \tag{2.5}$$

$$\rho c_p \frac{\partial T_s}{\partial t} = \frac{\partial}{\partial x} \left(k_s \frac{\partial T_s}{\partial x} \right) + \dot{q}_s^{\prime\prime\prime} \quad , \tag{2.7}$$

$$\dot{q}_{s,c}^{\prime\prime\prime\prime} = -\rho_0 \sum_j r_j(x) \Delta H_j \quad , \tag{2.9}$$

$$-k_s \frac{\partial T_s}{\partial x}(0,t) = \dot{q}_c^{\prime\prime} + \dot{q}_r^{\prime\prime} \quad , \qquad (2.10)$$

$$\dot{q}'' = \dot{m}'' \Delta H_c \quad . \tag{2.13}$$

$$r_{k} = \underbrace{(1 - \alpha_{A_{k}})^{n_{k}}}_{\text{reaction model}} \underbrace{A_{k} \exp\left(\frac{-E_{k}}{RT}\right)}_{\text{Arrhenius function}} \underbrace{X_{O_{2}}(x)^{n_{O_{2},k}}}_{\text{oxidation function}} \underbrace{\max\left[0, S_{thr,A,k}(T_{s} - T_{thr,k})\right]^{n^{t,k}}}_{\text{power function}}$$